
SVM Based Effective Malware Detection System
Smita Ranveer#1, Swapnaja Hiray*2

#Dept. Computer Engineering, Savitribai Phule Pune University,
Sinhgad College of Engineering Pune, India

Abstract—Malware is coined as an instance of malicious code
that has the potential to harm a computer or network. Recent
years have encountered massive growth in malwares as
existing signature based malware detection approaches are
becoming ineffective and intractable. Cyber criminals and
malware developers have adapted code obfuscation
techniques which undermines the effectiveness of malware
defense mechanism. Hence we propounded a system which
focuses on static analysis in addition with automated behavior
analysis in emulated environment generating behavior
reports to investigate malwares. The proposed method uses
programs as opcode density histograms and reduces the
explosion of features. We employed eigen vector subspace
analysis to filter and diminish the misclassification and
interference of features. Our system uses a hybrid approach
for discovering malware based on support vector machine
classifier so that potential of malware detection system can be
leveraged to combat with diverse forms of malwares while
attaining high accuracy and low false alarms.

Keywords—Behavior Analysis, Static Analysis, Opcode
Extraction, Malware Detection, Support Vector Machine.

I. INTRODUCTION

The enormous increase of internet users and system users in
any field is also followed by multiplicative rise in malwares
and cyber-attacks caused by them. Malware is a term
derived from malicious software. It is an instance of
automated malicious code which has potential to subvert
the function of the system. It is in a constant state of
malignant evolution, finding new forms, disguises, and
vectors to reach, intrude, and compromise its target
systems. According to CISCO 2014 annual Threat Security
Report [1], backdoors expanded the attack surface area and
given a way to cybercrime. As the threats have become
more matured and complex. CISCO evaluates 400,000
malware threats every day. Propagation of malware might
result in havoc to privacy and security of users. Hence it is
essential to have an efficient antivirus shield to the system.

In the light of existing antivirus solutions for tackling
malware, basically there are two approaches which rely on
the static or dynamic type of malware analysis employed
for identifying features. The signature-based detection
approach relies on static malware analysis. It documents
unique patterned signature, exploring malware features by
supervising the malicious code. In spite of the broad use of
this method commercially, it is vulnerable to the malwares
unseen previously, consistently fails to deal with zero day
attacks. On the contrary, the heuristic (also known as
behavior based detection approach) detection approach
which uses the dynamic type of malware analysis to key out
malware features based on the malicious behavior of
executables observed on execution in an emulated
environment. This method is able to confront the loopholes
of signature based malware detection approach up to some

extent. This method can precisely deal with the problem of
unknown malware discovery arise due to code obfuscation
techniques like code reordering, garbage insertion, variable
renaming employed by malware designers to disguise their
content. However, this detection approach generated an
additional challenge of greater amounts of false alarms
prohibiting the benign files from execution. This is novel
and serious problem as each suspicious executable file is
not malware. Behavior based detection approach is also
time intensive. Each of the two approaches had some
limitations. Since, some of the researchers invented hybrid
approach for malware detection which attempts to cope
with the weaknesses of both detection approaches. It is a
new line of defense to augment efficient but porous
antivirus defenses and less-reliable, more resource-intensive
heuristics. Such a defense would allow the antivirus layer to
block known threats, while keeping even the majority of
new threats from reaching the systems.

Following the similar intuition, we proposed an
effective detection technique removing the flaws of both
existing detection systems against malwares which uses the
hybrid approach. It mainly extends the idea of signature
based methods in addition with automatic behavior
analysis. Support Vector Machine (SVM), a supervised
machine learning technique is employed for classification
of malicious and benign softwares. Our system detects
malware on the basis of two features first by opcode density
of executables and system call features obtained by
dynamically tracing the behavior of executables during run-
time. We focus on reducing feature explosion in the original
dataset space and lessen the false alarm rate by analyzing
behavior of executables. We applied opcode feature
filtering to prune irrelevant and most common opcode
features. Our system automatically analyzes the behavior of
each malware executables and generates reports exploring
system call features. Further it trains and builds reference
model of SVM classifier to validate test dataset
discriminating malicious and benign executables given as
input.

 Rest of the paper is structured as follows: at first
section II explores the summarized view of earlier studies.
Section III gives the overview of proposed system; Further
Section IV gives the brief architecture of proposed system
following the step by step explanation of state of art. In this
vein, performance metrics and discussion of results are
briefed in section V and VI respectively. Finally concluding
remarks are stated in section VII.

II. RELATED WORK

Extensive survey has been done in the domain of malware
detection systems using both static and dynamic analysis.
Moskovitch et al. [2] presented mean accuracy of the
combinations n-gram opcode sequences. They stated that
2-gram opcode sequence was the best N-gram sequence

Smita Ranveer et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3361-3365

www.ijcsit.com 3361

comparatively, which showed better classification
accuracy. However, for more than bigram opcode sequence
the accuracy is decreased. Their further research in [3]
states that 99% can be achieved on considering the
malicious file percentage while their weakness observed on
packed executables. Santos et al. [4, 5] used opcode n-
gram sequences for categorizing malicious and benign files
with different feature selection and classification
algorithms. They obtained good detection rate while
keeping low False Positive Rate (FPR). In [3, 6], opcode
sequence of 1-gram and 2-gram sequences for detecting
new variants of malware families. They used histograms
for each n-gram sequences calculating frequency of
similarity ratio for each malware instance. Sekar et al. [7]
used n-gram approach and examined performance of
system by applying Finite State Automaton (FSA)
approach. They estimated two approaches on httpd, ftpd,
and nsfd protocols which resulted into a lower false
positive rate when compared to the n-gram approach.
These systems have to deal with computational overhead
when n-gram analysis is performed. In [8] presented an
automated malware detection system which classifies
malwares into their families monitoring their network
behavior. Firdausi et al. [9] propounded a malware
detection system which monitors the behavior of malicious
files in controlled environment using a free online dynamic
analysis tool named Anubis. The performance is tested on
the small dataset of benign and malicious files with and
without feature selection. The accuracy of 92.3% and
96.8% with and without feature selection resp. achieved by
J48 classifier was better than other classifiers SVM, KNN,
and naïve bayes. As per [8, 9], J48 decision trees given
better TPR, FPR and accuracy results in comparison with
other classifiers. In [10], Tian et al. presented an automated
classification system which uses API call sequences as
features and discriminates malwares and cleanwares
performance an accuracy of 97% achieved over a dataset
of malwares and cleanwares.
 An automatic behavior analyzing system
proposed by Rieck et al. in [11] which gives an
incremental and timely defense method for clustering and
classification of malware binaries in similar behavior and
identifying novel classes of malwares using machine
learning method. It avoids runtime overhead and gives
accurate discrimination of novel malware.
Park et al. [12] presented a malware detection system
which uses system call and their parameters values as the
features and they evaluated performance over 6 known
malware families and provided fair dissimilarity rates
keeping low false positives still the accuracy needed to be
improved as some malwares succeed to get kernel
privileges. Lee et al. in [13] proposed a similar technique
of clustering malware families using supervised machine
learning technique. These detection approaches have high
false positive rate. Malware developers have applied code
obfuscation techniques. Our system monitors behavior of
executables in controlled environment.
In this vein, we have chosen to reduce the computational
overhead required when n-gram analysis is performed.

III. SYSTEM OVERVIEW

We proposed a malware detection system which uses a
supervised machine learning approach for discovering
malwares. The SVM based malware detection system
extends the idea of signature based detection system with a
combination of behavior monitoring approach. It utilizes
static and dynamic analysis of malwares by taking the run
time traces of the executables. It applies signature and
behavior based methods parallelly for extracting opcodes
and system call features and further classifiers are trained
on the basis of these feature vectors generated. At first
executables under investigation are in test environment
with monitoring its behavior and runtime opcodes. The
programs in the dataset are disassembled; data is parsed
and represented using opcode density histograms gained
through dynamic analysis. A support vector machine is
used to create a reference model, which is used to evaluate
two set of features, opcode and system call features
obtained through behavior monitored. The reference model
is constructed by configuring the SVM to perform an
exhaustive search by traversing through all the features,
searching for those opcodes that have a positive impact on
the classification of benign and malicious software.

IV. PROPOSED MALWARE DETECTION SYSTEM

The proposed SVM based malware detection system being
implemented with machine learning techniques is based on
SVM classifier. It extends the notion of feature filtering
[14] and attempts to improve the performance with
addition of behavior detection mechanism [9]. The
malware detection system being implemented can be best
described as follows:

A. Dataset Preparation

The dataset is prepared by using two sets of executables one
is malicious and benign executables. Benign files are
system files of windows operating system taken from
system32 directory or program files directory. The
malicious executables were downloaded from the
VXheavens website [15], which cover malwares such as
virus, adwares, worms, Trojan horses, etc. These malwares
perform a range of malicious activities such as back-door
downloaders, system attack, fake alerts, fake warnings, ad-
ware, and information stealer. Our system uses SVM
classifier machine learning technique which implements
two phases training and testing. We used part of dataset for
training the classifier and part can be used for validation as
test data, SVM assigns a benchmark with measured target
value for each benign and malicious.

B. Feature Extraction

The program under investigation needs to be monitored
during execution. Dataset executables are disassembled by
using the debugging tool OllyDBG, which is an open
source disassembler used to extract the assembly language
code of each and every dataset executable. Opcodes are
obtained by disassembling executables. An opcode is
operational code, a machine language instruction that
specifies the operation to be performed. The operands
associated with each opcode are omitted. Further opcode

Smita Ranveer et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3361-3365

www.ijcsit.com 3362

occurrences are measured and are parsed into density
histograms for each executable. The next step is
streamlining the extracted sequences of opcode in the same
logical order as they appear in the executable file. Final
step is to map density histogram for each dataset
executables.

Fig. 1.Architecture of SVM based effective malware detection system

C. Behavior Monitoring

Each and every dataset file is executed in an automated
environment using dynamic analysis parallelly so that the
behavior of programs can be monitored. This performs
automatic behavior analysis on execution of files in
sandbox generating XML reports on the basis of behavior
profile. System call features are extracted for
discrimination of malicious and benign files.

D. Opcode Feature Filtering

An initial assessment of the data showed that the
distribution of the various opcodes does not conform to any
consistent distribution shape; rather it has been seen that
feature explosion occurs in which some of the opcodes
were irrelevant and very common. We employed feature
filtering approach to reduce the explosion of features and
diminish the interference and misclassification of benign
and malicious softwares. The proposed system investigates
Principal Component Analysis to find the subspace to
determine the importance of the individual opcodes and
weed out irrelevant opcodes.

1. Subspace Analysis using PCA: It determines the
importance of the individual opcodes while ranking their
relative importance as classification feature. It investigates

the eigenvalues and eigenvectors in subspace. Principal
Component Analysis (PCA) is a transformation of the
covariance matrix and it is termed as:

݆݅ܥ ൌ
1

݊െ1
∑ ሺ݆ܺ݉
݊
݉ൌ1 െ ܺഥ݅ ሻሺ݆ܺ݉ െ ܺഥ݆)

Where,

C = Covariance matrix of PCA transformation;
X = dataset value;
തܺ ൌ	Dataset mean;
n and m are data length;

PCA transforms the obtained covariance matrix into eigen
vectors. It finds new principal components of opcodes over
original set of opcodes and determines the number of PCs
that correlate to greater than some threshold. Further the
system searches for the most significant eigen values and
eigen vectors.

E. SVM Based Classification

SVM is a technique for data classification; it can
generate a nonlinear decision plane and classifies data
which has non-regular distribution. It avoids attributes with
greater numeric ranges dominating those with smaller
numeric ranges and it avoids numerical difficulties during
the calculation as kernel values usually depend on the inner
products of feature vectors. SVM works in two phases
training phase and testing phase.

During the training phase an SVM takes a set of input
points in the form of Attribute Relation File Format
(ARFF), each of which is marked as belonging to one of
two categories, and builds a model representing the input
points in such way that the points of different categories are
divided by a clear gap that is as wide as possible.
Thereafter, a new data point is mapped into the same space
and predicted to belong to a category based on which side
of the gap it falls on. A linear SVM model separates data
belonging to different categories by using a hyperplane so
that the distance from its nearest data point on each side is
maximized. The kernel trick allows the SVM algorithm to
become nonlinear to separate points by a hyperplane in a
transformed feature space. The SVM is configured and
trained to traverse through two types of features. At first
SVM highlights those files whose system calls are having
deviating behavior than normal behavior of benign files and
other one is SVM pinpoints those files having opcodes that
are having positive impact on the classification of benign
and malicious software. Finally during testing phase SVM
validates the dataset discriminating the files into sets of
benign and malicious files.

V. PERFORMANCE METRICS

The proposed system statistically measured the
performance of SVM based malware detection system for
discriminating benign and malicious software. The
statistical measures include True Positive Rate (TPR),
False Positive Rate (FPR) and accuracy. TPR is defined as
the ratio of the number of correctly detected malware to the
total number of malware in the testing set.

Smita Ranveer et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3361-3365

www.ijcsit.com 3363

TPR=
||

||ା||

FPR is termed as ratio of the number of normal files
classified as malware to the total number of normal files in
the testing set.

FPR =
||

||ା||	

Our proposed system’s detection accuracy is evaluated. It
gives the ratio of the total number of normal files detected
as normal and malware detected as malware to the total
number of files in the testing set. The proposed system
attains low FPR and accelerates detection accuracy.

VI. EXPERIMENTS AND RESULTS

The performance of the proposed system is measured and
validated on the basis of experiments by using the dataset
of various combinations of malicious and benign
executables at the time of training and testing. We first
used dataset of 75 benign files and 35 malware files for
training and tested the system to compare our method, we
have validated test dataset and measured the performance
of the SVM based malware detection system on static,
opcode based malware detection as well as on system call
features, which is behavior based malware detection
approach. Fig.2 and 3, show the obtained results in terms
of TPR and FPR respectively. The conduction of tests
showed that TPR and FPR results were improved when
using the combination of both static and dynamic features.
In terms of TPR, opcode based static approach yield
highest 0.95 classification rate, while behavior based
approach yielded 0.93 which was low in comparison with
hybrid approach for the same test set. In terms of FPR,
opcode based static approach yield 0.08 false alarms while
behavior based approach yielded 0.3 which was high in
comparison with hybrid approach for the same test set. The
proposed system is able to attain a TPR up to 0.95-1 and
FPR up to 0.03-0 with quite variation on changing the
number of malicious files in training dataset. On observing
these results, we have conclude that it is possible to reduce
impact of countermeasures of static and dynamic methods,
we can improve the performance of the system in terms of
TPR while maintaining low FPR and notable rise in
accuracy.

Besides, we evaluated performance of the system to see the
effect of MFP among the training set files. We tested the
dataset combinations by creating five levels of MFP in the
training set (5, 10, 15, 30, and 50%) and measured the
variations in the TPR and FPR of the system as depicted in
Fig. 4. We observed that the system’s performance was
generally low and dropped significantly for 5%, 15% and
50% MFP in the training dataset. Additionally, it has been
seen that the FPR grows with the increasing level of the
MFP in the training dataset.

Fig. 2. Performance evaluation in terms of TPR

Fig. 3. Performance evaluation in terms of FPR

 Fig. 4. Performance evaluation on the basis of MFP in training

dataset.
In particular, the best overall results were obtained by
SVM trained with large number of training files. The
obtained results validate our initial hypothesis that building
an unknown malware detector based on hybrid approach is
feasible. The hybrid approach for malware detection using
machine learning classifier (SVM) achieved high
performance in classifying unknown malware

Smita Ranveer et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3361-3365

www.ijcsit.com 3364

VII. CONCLUSION

In this paper, we present a method for malware detection.
Specifically, we propound a system for representing
malware that relied on opcodes density histograms in order
to construct a vector representation of the executables and
also system call features obtained by executing the
malwares in automated environment. Our system
implements SVM as a means of discovering malware
consequently reducing the training efforts. Our malware
detection system eliminates the flaws of both signature
based and behavior based detection techniques
incorporating the hybrid analysis for efficient detection of
malware. Our experiments show that this method provides
a good detection ratio of unknown malware while keeping
a low false positive rate. The future development of this
malware detection system will be concentrated on facing
packed executables.

REFERENCES
[1] Cisco labs, “CISCO Internet Threat Security Report 2014”.

[2] R. Moskovitch, C. Feher, N. Tzachar, E. Berger, M. Gitelman, S.
Dolev and Y. Elovici. “Unknown Malcode Detection Using
OPCODE Representation.” Proc. Of the 1-st European Conference
on Intelligence and Security Informatics (EuroISI08), 2008.

[3] Moskovitch R, Stopel D, Feher C, Nissim N, Elovici Y. “Unknown
malcode detection via text categorization and the imbalance
problem” In: IEEE Intelligence and Security Informatics, Taiwan;
2008.

[4] I.Santos, F. Brezo, X. Ugarte-Pedrero, P. G. Bringas, “Opcode
sequences as representation of executables for data-mining-based
unknown malware detection,” Information Sciences, vol. 231, pp.
64-82, 2013.

[5] A.Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y. Elovici,”
Detecting unknown malicious code by applying classification
techniques on opcode patterns,” Security Informatics, vol. 1, pp.
122, 2012.

[6] D. Bilar, “Opcodes as predictor for malware.” International Journal
of Electronic Security and Digital Forensics, pp. 156-168, 2007.

[7] R. Sekar, M. Bendre, D. Bollin

[8] eni, and Bollineni, R. Needham and M. Abadi, Eds., “A fast
automaton-based method for detecting anomalous program
behaviors,” in Proc. 2001 IEEE Symp. Security and Privacy, IEEE
Comput. Soc., Los Alamitos, CA, USA, 2001, pp. 144–155.

[9] Nari, S. and Ghorbani, “Automated Malware Classification Based
on Network Behavior.” Proceedings of International Conference on
Computing, Networking and Communications (ICNC), San Diego,
28-31 January 2013, 642-647.

[10] Firdausi, I., Lim, C. and Erwin, “Analysis of Machine Learning
Techniques Used in Behavior Based Malware Detection,”
Proceedings of 2nd International Conference on Advances in
Computing, Control and Telecommunication Technologies (ACT),
Jakarta, 2-3 December 2010, 201-203.

[11] Tian, R., Islam, M.R., Batten, L. and Versteeg, S. (2010)
“Differentiating Malware from Cleanwares Using Behavioral
Analysis,” Proceedings of 5th International Conference on
Malicious and Unwanted Software (Malware), Nancy, 19-20
October 2010, 23-30.

[12] Rieck, K., Trinius, P., Willems, C. and Holz, T. (2011) “Automatic
Analysis of Malware Behavior Using Machine Learning.” Journal
of Computer Security, 19, 639-668.

[13] Park, Y., Reeves, D., Mulukutla, V. and Sundaravel, Fast Malware
Classification by Automated Behavioral Graph Matching.
Proceedings of the 6th Annual Workshop on Cyber Security and
Information Intelligence Research, Article No. 45,2010.

[14] Lee, T. and Mody, J.J. “Behavioral Classification” Proceedings of
the European Institute for Computer Antivirus Research Conference
(EICAR’2006).

[15] Philip OKane, Sakir Sezer, Kieran McLaughlin, and Eul Gyu Im,
SVM Training Phase Reduction Using Dataset Feature Filtering for
Malware Detection, IEEE Transactions on Information Forensics
and security Vol. 8, No. 3, MARCH 2013.

[16] VXheavens Website:url:http://vx.netlux.org.

Smita Ranveer et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3361-3365

www.ijcsit.com 3365

