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Abstract—Malware is coined as an instance of malicious code 
that has the potential to harm a computer or network. Recent 
years have encountered massive growth in malwares as 
existing signature based malware detection approaches are 
becoming ineffective and intractable. Cyber criminals and 
malware developers have adapted code obfuscation 
techniques which undermines the effectiveness of malware 
defense mechanism. Hence we propounded a system which 
focuses on static analysis in addition with automated behavior 
analysis in emulated environment generating behavior 
reports to investigate malwares. The proposed method uses 
programs as opcode density histograms and reduces the 
explosion of features. We employed eigen vector subspace 
analysis to filter and diminish the misclassification and 
interference of features. Our system uses a hybrid approach 
for discovering malware based on support vector machine 
classifier so that potential of malware detection system can be 
leveraged to combat with diverse forms of malwares while 
attaining high accuracy and low false alarms. 

Keywords—Behavior Analysis, Static Analysis, Opcode 
Extraction, Malware Detection, Support Vector Machine.  

I.  INTRODUCTION 

The enormous increase of internet users and system users in 
any field is also followed by multiplicative rise in malwares 
and cyber-attacks caused by them. Malware is a term 
derived from malicious software. It is an instance of 
automated malicious code which has potential to subvert 
the function of the system. It is in a constant state of 
malignant evolution, finding new forms, disguises, and 
vectors to reach, intrude, and compromise its target 
systems. According to CISCO 2014 annual Threat Security 
Report [1], backdoors expanded the attack surface area and 
given a way to cybercrime. As the threats have become 
more matured and complex. CISCO evaluates 400,000 
malware threats every day. Propagation of malware might 
result in havoc to privacy and security of users. Hence it is 
essential to have an efficient antivirus shield to the system. 

In the light of existing antivirus solutions for tackling 
malware, basically there are two approaches which rely on 
the static or dynamic type of malware analysis employed 
for identifying features. The signature-based detection 
approach relies on static malware analysis. It documents 
unique patterned signature, exploring malware features by 
supervising the malicious code. In spite of the broad use of 
this method commercially, it is vulnerable to the malwares 
unseen previously, consistently fails to deal with zero day 
attacks. On the contrary, the heuristic (also known as 
behavior based detection approach) detection approach 
which uses the dynamic type of malware analysis to key out 
malware features based on the malicious behavior of 
executables observed on execution in an emulated 
environment. This method is able to confront the loopholes 
of signature based malware detection approach up to some 

extent. This method can  precisely deal with the problem of 
unknown malware discovery arise due to code obfuscation 
techniques like code reordering, garbage insertion, variable 
renaming employed by malware designers to disguise their 
content. However, this detection approach generated an 
additional challenge of greater amounts of false alarms 
prohibiting the benign files from execution. This is novel 
and serious problem as each suspicious executable file is 
not malware. Behavior based detection approach is also 
time intensive. Each of the two approaches had some 
limitations. Since, some of the researchers invented hybrid 
approach for malware detection which attempts to cope 
with the weaknesses of both detection approaches. It is a 
new line of defense to augment efficient but porous 
antivirus defenses and less-reliable, more resource-intensive 
heuristics. Such a defense would allow the antivirus layer to 
block known threats, while keeping even the majority of 
new threats from reaching the systems. 

Following the similar intuition, we proposed an 
effective detection technique removing the flaws of both 
existing detection systems against malwares which uses the 
hybrid approach. It mainly extends the idea of signature 
based methods in addition with automatic behavior 
analysis. Support Vector Machine (SVM), a supervised 
machine learning technique is employed for classification 
of malicious and benign softwares. Our system detects 
malware on the basis of two features first by opcode density 
of executables and system call features obtained by 
dynamically tracing the behavior of executables during run-
time. We focus on reducing feature explosion in the original 
dataset space and lessen the false alarm rate by analyzing 
behavior of executables. We applied opcode feature 
filtering to prune irrelevant and most common opcode 
features. Our system automatically analyzes the behavior of 
each malware executables and generates reports exploring 
system call features. Further it trains and builds reference 
model of SVM classifier to validate test dataset 
discriminating malicious and benign executables given as 
input. 

 Rest of the paper is structured as follows: at first 
section II explores the summarized view of earlier studies. 
Section III gives the overview of proposed system; Further 
Section IV gives the brief architecture of proposed system 
following the step by step explanation of state of art.  In this 
vein, performance metrics and discussion of results are 
briefed in section V and VI respectively. Finally concluding 
remarks are stated in section VII. 

II. RELATED WORK

Extensive survey has been done in the domain of malware 
detection systems using both static and dynamic analysis. 
Moskovitch et al. [2] presented mean accuracy of the 
combinations n-gram opcode sequences. They stated that 
2-gram opcode sequence was the best N-gram sequence 
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comparatively, which showed better classification 
accuracy. However, for more than bigram opcode sequence 
the accuracy is decreased. Their further research in [3] 
states that 99% can be achieved on considering the 
malicious file percentage while their weakness observed on 
packed executables. Santos et al. [4, 5] used opcode n-
gram sequences for categorizing malicious and benign files 
with different feature selection and classification 
algorithms. They obtained good detection rate while 
keeping low False Positive Rate (FPR). In [3, 6], opcode 
sequence of 1-gram and 2-gram sequences for detecting 
new variants of malware families. They used histograms 
for each n-gram sequences calculating frequency of 
similarity ratio for each malware instance. Sekar et al. [7] 
used n-gram approach and examined performance of 
system by applying Finite State Automaton (FSA) 
approach. They estimated two approaches on httpd, ftpd, 
and nsfd protocols which resulted into a lower false 
positive rate when compared to the n-gram approach. 
These systems have to deal with computational overhead 
when n-gram analysis is performed. In [8] presented an 
automated malware detection system which classifies 
malwares into their families monitoring their network 
behavior. Firdausi et al. [9] propounded a malware 
detection system which monitors the behavior of malicious 
files in controlled environment using a free online dynamic 
analysis tool named Anubis. The performance is tested on 
the small dataset of benign and malicious files with and 
without feature selection. The accuracy of 92.3% and 
96.8% with and without feature selection resp. achieved by 
J48 classifier was better than other classifiers SVM, KNN, 
and naïve bayes. As per [8, 9], J48 decision trees given 
better TPR, FPR and accuracy results in comparison with 
other classifiers. In [10], Tian et al. presented an automated 
classification system which uses API call sequences as 
features and discriminates malwares and cleanwares 
performance an accuracy of 97% achieved over a dataset 
of malwares and cleanwares.  
 An automatic behavior analyzing system 
proposed by Rieck et al. in  [11] which gives an 
incremental and timely defense method for clustering and 
classification of malware binaries in similar behavior and 
identifying novel classes of malwares using machine 
learning method. It avoids runtime overhead and gives 
accurate discrimination of novel malware. 
Park et al. [12] presented a malware detection system 
which uses system call and their parameters values as the 
features and they evaluated performance over 6 known 
malware families and provided fair dissimilarity rates 
keeping low false positives still the accuracy needed to be 
improved as some malwares succeed to get kernel 
privileges. Lee et al. in [13] proposed a similar technique 
of clustering malware families using supervised machine 
learning technique. These detection approaches have high 
false positive rate. Malware developers have applied code 
obfuscation techniques. Our system monitors behavior of 
executables in controlled environment. 
In this vein, we have chosen to reduce the computational 
overhead required when n-gram analysis is performed.                    

III. SYSTEM OVERVIEW 

We proposed a malware detection system which uses a 
supervised machine learning approach for discovering 
malwares. The SVM based malware detection system 
extends the idea of signature based detection system with a 
combination of behavior monitoring approach. It utilizes 
static and dynamic analysis of malwares by taking the run 
time traces of the executables. It applies signature and 
behavior based methods parallelly for extracting opcodes 
and system call features and further classifiers are trained 
on the basis of these feature vectors generated. At first 
executables under investigation are in test environment 
with monitoring its behavior and runtime opcodes. The 
programs in the dataset are disassembled; data is parsed 
and represented using opcode density histograms gained 
through dynamic analysis. A support vector machine is 
used to create a reference model, which is used to evaluate 
two set of features, opcode and system call features 
obtained through behavior monitored. The reference model 
is constructed by configuring the SVM to perform an 
exhaustive search by traversing through all the features, 
searching for those opcodes that have a positive impact on 
the classification of benign and malicious software. 

IV. PROPOSED MALWARE DETECTION SYSTEM 

The proposed SVM based malware detection system being 
implemented with machine learning techniques is based on 
SVM classifier. It extends the notion of feature filtering 
[14] and attempts to improve the performance with 
addition of behavior detection mechanism [9]. The 
malware detection system being implemented can be best 
described as follows: 
 
A. Dataset Preparation 

The dataset is prepared by using two sets of executables one 
is malicious and benign executables. Benign files are 
system files of windows operating system taken from 
system32 directory or program files directory. The 
malicious executables were downloaded from the 
VXheavens website [15], which cover malwares such as 
virus, adwares, worms, Trojan horses, etc. These malwares 
perform a range of malicious activities such as back-door 
downloaders, system attack, fake alerts, fake warnings, ad-
ware, and information stealer. Our system uses SVM 
classifier machine learning technique which implements 
two phases training and testing. We used part of dataset for 
training the classifier and part can be used for validation as 
test data, SVM assigns a benchmark with measured target 
value for each benign and malicious.  

B. Feature Extraction 

The program under investigation needs to be monitored 
during execution. Dataset executables are disassembled by 
using the debugging tool OllyDBG, which is an open 
source disassembler used to extract the assembly language 
code of each and every dataset executable. Opcodes are 
obtained by disassembling executables. An opcode is 
operational code, a machine language instruction that 
specifies the operation to be performed. The operands 
associated with each opcode are omitted. Further opcode 
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occurrences are measured and are parsed into density 
histograms for each executable. The next step is 
streamlining the extracted sequences of opcode in the same 
logical order as they appear in the executable file. Final 
step is to map density histogram for each dataset 
executables. 
 

 
 

Fig. 1.Architecture of SVM based effective malware detection system 

 

C. Behavior Monitoring 

Each and every dataset file is executed in an automated 
environment using dynamic analysis parallelly so that the 
behavior of programs can be monitored. This performs 
automatic behavior analysis on execution of files in 
sandbox generating XML reports on the basis of behavior 
profile. System call features are extracted for 
discrimination of malicious and benign files. 
 
D. Opcode Feature Filtering 

An initial assessment of the data showed that the 
distribution of the various opcodes does not conform to any 
consistent distribution shape; rather it has been seen that 
feature explosion occurs in which some of the opcodes 
were irrelevant and very common. We employed feature 
filtering approach to reduce the explosion of features and 
diminish the interference and misclassification of benign 
and malicious softwares. The proposed system investigates 
Principal Component Analysis to find the subspace to 
determine the importance of the individual opcodes and 
weed out irrelevant opcodes. 

1. Subspace Analysis using PCA:  It determines the 
importance of the individual opcodes while ranking their 
relative importance as classification feature. It investigates 

the eigenvalues and eigenvectors in subspace. Principal 
Component Analysis (PCA) is a transformation of the 
covariance matrix and it is termed as: 

݆݅ܥ ൌ
1

݊െ1
∑ ሺ݆ܺ݉
݊
݉ൌ1 െ ܺഥ݅ ሻሺ݆ܺ݉ െ ܺഥ݆ ) 

Where,  

C = Covariance matrix of PCA transformation; 
X = dataset value; 
തܺ ൌ	Dataset mean; 
n and m are data length; 
 

PCA transforms the obtained covariance matrix into eigen 
vectors. It finds new principal components of opcodes over 
original set of opcodes and determines the number of PCs 
that correlate to greater than some threshold. Further the 
system searches for the most significant eigen values and 
eigen vectors. 

 

E. SVM Based Classification 

SVM is a technique for data classification; it can 
generate a nonlinear decision plane and classifies data 
which has non-regular distribution. It avoids attributes with 
greater numeric ranges dominating those with smaller 
numeric ranges and it avoids numerical difficulties during 
the calculation as kernel values usually depend on the inner 
products of feature vectors. SVM works in two phases 
training phase and testing phase. 

During the training phase an SVM takes a set of input 
points in the form of Attribute Relation File Format 
(ARFF), each of which is marked as belonging to one of 
two categories, and builds a model representing the input 
points in such way that the points of different categories are 
divided by a clear gap that is as wide as possible. 
Thereafter, a new data point is mapped into the same space 
and predicted to belong to a category based on which side 
of the gap it falls on. A linear SVM model separates data 
belonging to different categories by using a hyperplane so 
that the distance from its nearest data point on each side is 
maximized. The kernel trick allows the SVM algorithm to 
become nonlinear to separate points by a hyperplane in a 
transformed feature space. The SVM is configured and 
trained to traverse through two types of features. At first 
SVM highlights those files whose system calls are having 
deviating behavior than normal behavior of benign files and 
other one is SVM pinpoints those files having opcodes that 
are having positive impact on the classification of benign 
and malicious software. Finally during testing phase SVM 
validates the dataset discriminating the files into sets of 
benign and malicious files. 

V. PERFORMANCE METRICS 

The proposed system statistically measured the 
performance of SVM based malware detection system for 
discriminating benign and malicious software. The 
statistical measures include True Positive Rate (TPR), 
False Positive Rate (FPR) and accuracy. TPR is defined as 
the ratio of the number of correctly detected malware to the 
total number of malware in the testing set. 
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FPR is termed as ratio of the number of normal files 
classified as malware to the total number of normal files in 
the testing set. 

FPR =
||

||ା||	
 

 
Our proposed system’s detection accuracy is evaluated. It 
gives the ratio of the total number of normal files detected 
as normal and malware detected as malware to the total 
number of files in the testing set. The proposed system 
attains low FPR and accelerates detection accuracy. 
 

VI. EXPERIMENTS AND RESULTS  

The performance of the proposed system is measured and 
validated on the basis of experiments by using the dataset 
of various combinations of malicious and benign 
executables at the time of training and testing. We first 
used dataset of 75 benign files and 35 malware files for 
training and tested the system to compare our method, we 
have validated test dataset and measured the performance 
of the SVM based malware detection system on static, 
opcode based malware detection as well as on system call 
features, which is behavior based malware detection 
approach. Fig.2 and 3, show the obtained results in terms 
of TPR and FPR respectively. The conduction of tests 
showed that TPR and FPR results were improved when 
using the combination of both static and dynamic features. 
In terms of TPR, opcode based static approach yield 
highest 0.95 classification rate, while behavior based 
approach yielded 0.93 which was low in comparison with 
hybrid approach for the same test set. In terms of FPR, 
opcode based static approach yield 0.08 false alarms while 
behavior based approach yielded 0.3 which was high in 
comparison with hybrid approach for the same test set. The 
proposed system is able to attain a TPR up to 0.95-1 and 
FPR up to 0.03-0 with quite variation on changing the 
number of malicious files in training dataset. On observing 
these results, we have conclude that it is possible to reduce 
impact of countermeasures of static and dynamic methods, 
we can improve the performance of the system in terms of 
TPR while maintaining low FPR and notable rise in 
accuracy. 
 
Besides, we evaluated performance of the system to see the 
effect of MFP among the training set files. We tested the 
dataset combinations by creating five levels of MFP in the 
training set (5, 10, 15, 30, and 50%) and measured the 
variations in the TPR and FPR of the system as depicted in 
Fig. 4. We observed that the system’s performance was 
generally low and dropped significantly for 5%, 15% and 
50% MFP in the training dataset. Additionally, it has been 
seen that the FPR grows with the increasing level of the 
MFP in the training dataset. 

 
Fig. 2. Performance evaluation in terms of TPR 

 

Fig. 3. Performance evaluation in terms of FPR 

 
         Fig. 4. Performance evaluation on the basis of MFP in training 

dataset. 
In particular, the best overall results were obtained by 
SVM trained with large number of training files. The 
obtained results validate our initial hypothesis that building 
an unknown malware detector based on hybrid approach is 
feasible. The hybrid approach for malware detection using 
machine learning classifier (SVM) achieved high 
performance in classifying unknown malware 
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VII. CONCLUSION 

In this paper, we present a method for malware detection. 
Specifically, we propound a system for representing 
malware that relied on opcodes density histograms in order 
to construct a vector representation of the executables and 
also system call features obtained by executing the 
malwares in automated environment. Our system 
implements SVM as a means of discovering malware 
consequently reducing the training efforts. Our malware 
detection system eliminates the flaws of both signature 
based and behavior based detection techniques 
incorporating the hybrid analysis for efficient detection of 
malware. Our experiments show that this method provides 
a good detection ratio of unknown malware while keeping 
a low false positive rate. The future development of this 
malware detection system will be concentrated on facing 
packed executables. 
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